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LETTER TO THE EDITOR

The existence of many-particle bound states despite a pair
interaction with positive scattering length

Bernhard Baumgartner
Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Germany

Received 8 September 1997

Abstract. Examples of bound states are presented, for a system of three identical particles as
well as for a system of particles on a lattice. The particles may be bosons as well as fermions.
The interaction between them is given by a pair potential, which does not allow two-particle
bound states, has positive scattering length and is not too different from realistic interatomic
potentials.

1. Introduction

Experiments which have produced Bose–Einstein condensates of several different elements
sparked a renewed interest in the theory of Bose–Einstein condensation (Yang 1997, Huang
and Tommasini 1996, Burnettet al 1996 and references therein). A large part of theoretical
work relies on the formula

E/N = 2π(h̄2/m)ρa +O(
√
ρa3) (1)

for the ground-state energy of a non-relativistic Bose gas with low densityρ, where the
particles interact pairwise by a potential with scattering lengtha. The arguments for its
validity (Lieb 1965, 1963 and references therein) rest on theassumption, that there exists
no many-body bound state.

A related, less discussed problem would be to find a formula for the ground-state energy
of a non-relativistic low-density Fermi gas with pair interactions. Again it seems reasonable,
that theρ5/3-formula for non-interacting fermions has to be enlarged by adding low-order
terms,provided that no many-body bound stateexists; thatE > 0.

Concerning bosons, a necessary condition for the positivity of the ground state energy
is the non-existence of two-particle bound states, and the positivity of the scattering length
a of the pair potentialv, which, throughout this work, is assumed to be a function of the
particle distance only. The message of this paper is the demonstration that this condition
is not sufficient, neither for bosons nor fermions. We present bound states for systems of
three particles and for a system of particles on a lattice. The family of pair potentials which
are used are not too different from realistic interatomic potential. As far as is known they
are thermodynamically stable, have a repulsive core and an attractive well. Such examples
have never been presented before.

2. Set-up: The interaction potential and statistics

The interaction potentialv is a function of the interparticle distancer only. The calculations
are carried out with ¯h2/m = 1. However in the reduced two-particle system a reduced mass
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equal tom/2 has to be used and the scattering length is to be calculated by solving

ϕ′′(r) = v(r)ϕ(r) (2)

with

ϕ(0) = 0.

Non-existence of a two-particle bound state is equivalent toϕ(r) not changing sign. The
scattering lengtha is

a := lim
r→∞(r − ϕ/ϕ

′). (3)

Using parametersc > 0, d > 1 we define the potentialv(r) to be zero forr > c + d, and
otherwise

v(r) := (r − c)2− 1+ µδ(c + d − r) (4)

µ = d + 1

c + d .
The absence of bound states and positivity of the scattering length are seen by comparison
of ϕ with f (r) = e−(r−c)

2/2. The Gaussianf is also a solution of (2) for 0< r < c + d.
The Wronskianw = ϕ′f − ϕf ′ is constant in this interval andϕ does not change sign
(Sturm’s oscillation theorem). The Wronskianw is strictly positive, if ϕ is chosen as
positive. Approachingc + d from the lower side one finds

ϕ′(c + d − 0)

ϕ(c + d) = w

ϕf
+ f

′(c + d)
f (c + d) >

f ′(c + d)
f (c + d) = −d.

The δ-function part of the barrier makes

ϕ′(c + d + 0)

ϕ(c + d) = ϕ′(c + d − 0)

ϕ(c + d) + µ > 1

c + d . (5)

Outside the barrierϕ(r) is linear, so (5) implies that it does not change sign and thata is
strictly positive.

Thermodynamic stability obviously only holds ifc is not too small. We prove it for
c > 5 by boundingv from below by a positive definite function. First, for anyc, d under
consideration,

v(r) > uc(r) := [(r − c)2− 1]θ(c + 1− r)
boundingv from below by removing all of the barrier. Forc = 5 it is easy to check
numerically that

u5(r) > g(r) := 20e−0.8r − 4e−0.2r .

This function is positive definite. Its Fourier transform as a function ofx in R3, with
r = |x|, is a positive function ofk with |k| = k:

g̃(k) = 2
√

2/π

(0.82+ k2)2(0.22+ k2)2
[0.128+ 15.2k2] > 0.

For c > 5 we make a comparison by scaling:

uc(r) > (c/5)2u5(5r/c).

So eachv(r) with c > 5 is a sum of a positive definite and a positive function, which
implies thermodynamic stability (Ginibre 1968).

Concerning the statistics it will not be necessary to take special care of the bosons.
The true ground-state wavefunction for distinguishable but equal particles is automatically
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symmetric under exchange. So any proof for the existence of a bound state of distinguishable
particles is also a proof valid for bosons.

The fermions on the lattice will be satisfied with a product of one-particle wavefunctions
which do not overlap. Such a product can be antisymmetrized without any change in energy.
For three fermions the antisymmetry is achieved by choosing the right angular momenta.

3. Existence of a three-particle bound state

The Hamiltonian

−1

2

3∑
i=1

1xi +
∑
i<j

v(|xi − xj |) (6)

acts onL2(R9).
The free movement of the centre of mass with the coordinatesxCM = (x1+x2+x3)/3

can be separated off. Since the transformation inR9 to the system of coordinates
√

3xCM

y1 = 1√
6
(2x1− x2− x3) (7)

y2 = 1√
2
(x2− x3)

is orthogonal, the kinetic energy of inner rotations and oscillations is represented by

− 1
21y1 − 1

21y2. (8)

The interaction energy depends only on theri = |yi | and the angleϑ ∈ [0, π ] defined by

y1 · y2 = r1r2 cosϑ (9)

since

|x1− x2(3)| = (3r2
1/2+ r2

2/2− (+)
√

3r1r2 cosϑ)1/2

|x2− x3| =
√

2r2. (10)

For fixed r1, r2, ϑ the inner rotations remain, which may be expressed using three Euler
angles.

The mathematical situation is thus analogous to the one in the treatment of the Helium
atom by Hylleraas (1928) and Breit (1930). Restriction tos-waves of the rotation gives as
the operator for the kinetic energy of oscillations

−1

2

[
1

r2
1

∂

∂r1
r2

1
∂

∂r1
+ 1

r2
2

∂

∂r2
r2

2
∂

∂r2
+
(

1

r2
1

+ 1

r2
2

)
1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ

]
(11)

acting on the Hilbert space

L2(R+ × R+ × [0, π ], r2
1r

2
2 sinϑ dr1 dr2 dϑ).

With a unitary transformation to theL2 on the same set, but with Lebesgue measure,
multiplying the wavefunctions byr1r2

√
sinϑ , the kinetic-energy operator becomes

−1

2

[
∂2

∂r2
1

+ ∂2

∂r2
2

+
(

1

r2
1

+ 1

r2
2

)(
∂2

∂ϑ2
+ 1

4

(
1+ 1

sin2 ϑ

))]
. (12)

We do not have to take care of the boundary conditions, since we will finally apply this
operator to functions with compact support in the interior only.
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The s-waves of Euler angles are not allowed for fermions. They require higher angular
momenta introducing a centrifugal force. More details of the necessary modifications for
their treatment follow at the end of this section.

We restrict our attention to ‘small’ oscillations near the minimum of the potential,
assuming the parametersc andd to be large. The final change of coordinates is therefore

u := 1√
2
(r1+ r2)− c

v := 1√
2
(r1− r2) (13)

w := 1

2
c
(
ϑ − π

2

)
.

These coordinates are chosen according to symmetries:u is the coordinate for a ‘breathing
mode’, whereϑ and r1/r2 = 1 remain fixed. Because of the symmetry under particle
exchange, the other oscillations should be degenerate, with equal frequencies.

Expanding the potential in powers ofu, v and ϑ − π/2 about its minimum at
r1 = r2 = c/

√
2, ϑ = π/2 gives an expansion in powers of 1/c. This expansion of

the interaction energies involves

(|x1− x2(3)| − c)2 =
(
u+ v

2
− (+)

√
3

2
w

)2

+O

(
1

c

)
(|x2− x3| − c)2 = (u− v)2. (14)

Summing up gives the potential energy

V = −3+ 3u2+ 3

2
v2+ 3

2
w2+O

(
1

c

)
. (15)

The operator for the kinetic energy is now

−1

2
1u,v,w + 1

2

[
1− c

2

4

(
1

r2
1

+ 1

r2
2

)]
∂2

∂w2
− 1

8

(
1+ 1

sin2 ϑ

)(
1

r2
1

+ 1

r2
2

)
(16)

1u,v,w := ∂2

∂u2
+ ∂2

∂v2
+ ∂2

∂w2
.

The harmonic-oscillator Hamiltonian made from the leading terms,

− 1
21u,v,w + 3u2+ 3

2v
2+ 3

2w
2− 3 (17)

has the negative ground state energy

1
2

√
6+
√

3− 3= −0.043. . . (18)

It remains to discuss the corrections from the anharmonic terms in (15) and (16), and also
from the restriction to a compact support. All these corrections can be bounded and the
bounds can be controlled in the limit of largec, since they fall off at least as 1/c, as is
shown in the appendix. Hence it is proven, that there exists a bound state, a molecule of
three bosonic atoms arranged in an equilateral triangle.

When treating the model with fermions, we introduce the antisymmetrizing factor

(y1× y2) · a
|y1× y2|
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where a is a constant vector. This is a function of the Euler angles, determining the
rotational state of the molecule. It is completely antisymmetric under particle exchange. Its
contribution to the kinetic energy gives the angular momentum barrier(

1

r2
1

+ 1

r2
2

)
1

sin2 ϑ

which has to be added to the Hamiltonian of the oscillations, in formulas (11), (12) and
(16).

The trial wavefunctions for oscillations have to be completely symmetric under particle
exchange. We may use the same functions as in the case of the bosons. Once their support
is sufficiently restricted, the symmetrization has no effect on kinetic or potential energy.

The contribution from the angular momentum is of the order of 1/c2.

4. A many-body bound state in the form of a lattice

The set-up is the same as above. The number of particles is very large or infinity. The
energy of one particle in the interior will be calculated. As the state of the many-particle
system, a product of independent one-particle states is chosen. Each one-particle state is
defined by the Gaussian wavefunction

ψ(x) = (λ/π)3/4e−λx
2/2 (19)

translated to be centred at a lattice point of a fcc or hcp lattice (close packing with 12 nearest
neighbours). The distance of neighbours is chosen asc, the parameter which defines the
distance of two particles at the minimum of interaction potential. (This choice is not optimal
in minimizing the energy, but it simplifies the calculations.)

The kinetic energy per particle is

Ekin = 3λ/4. (20)

The potential energy of a pair of particles, belonging to a pair of lattice points in the distance
b = |b|, is

Epair,b =
∫ ∫

v(|z − y|)ψ2(z)ψ2(y − b)d3z d3y

=
∫
v(|x|)

(∫
ψ2(x+ y)ψ2(y − b)d3y

)
d3x. (21)

This can simply be reduced to

Epair,b =
(
λ

2π

)1/2 1

b

∫ ∞
0
v(r)[e−λ(r−b)

2/2− e−λ(r+b)
2/2]r dr. (22)

In order to get a low energy, we have to place the cut-off distancec + d of the interaction
potential between the distances to nearest and next nearest neighbours. For example at
halfway

d =
√

2− 1

2
c.

Then the contributions of the next nearest and all the other particles located far away, to
the energy are small, according to the fall-off of the Gaussians. The nearest neighbours are
located at distanceb = c, where the bottom ofv(r) lies. The harmonic part ofv(r) near its
bottom thus gives the main contribution to the integral (22). The negative Gaussian and the
boundaries to the harmonic part atr = 0 andr = c+d have little influence, again according
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to the fall-off of the Gaussians. The approximate main contribution to the potential energy
per particle, half of the pair interactions with 12 nearest neighbours, can thus be calculated
analytically as

6

(
λ

2π

)1/2 1

c

∫ +∞
−∞

[(r − c)2− 1]e−λ(r−c)
2/2r dr = 6

(
1

λ
− 1

)
. (23)

The energy per particle, the sum of (20) and (23)

3λ

4
+ 6

λ
− 6 (24)

is minimized withλ = 2
√

2:

E = 3
√

2− 6≈ −1.757. (25)

This model can also be used for fermions: one may proceed by restricting the one-particle
wavefunctions to a compact support, so that they do not overlap. This procedure will
decrease the potential energy and increase the kinetic energy. The correction is always
measured by the fall-off of the Gaussian (see the appendix). Antisymmetrization has then
no effect on the energy.

5. Discussion

Having established the existence of many-body bound states, the reason why the ‘repulsive
effect’ of the positive scattering length breaks down can be identified. It is essentially
the dominance of many-particle correlations, when they cannot be decomposed into pair
correlations. For three particles this correlation has to be fine tuned, determining the
wavefunctions of relative motion and leading to weak binding. For many particles much
cruder correlations, determining only the relative mean positions, give stronger binding.
(One may then consider pair potentials which are more realistic, with a reduced repulsive
barrier outside the attractive well.)

Dropping the requirement for thermodynamic stability, there are much simpler
arguments against the sufficiency of the positive scattering length as a condition for the
absence of bound states: consider a pair potential which is negative for smallr in a
neighbourhood of the origin(v(r) = (r2 − 3)θ(d − r) + dδ(r − d) for example). Then,
N particles in a cluster with such a small diameter will have a negative potential energy,
proportional toN2. But kinetic energies need not increase faster thanN in the case of
bosons,N5/3 in the case of fermions. (Considering bosons, already three of them can have
a bound state with the given example potential.)

In a low-density gas the occurrence of special structures has low probability, so one
might philosophize, that a gaseous state without bounds persists some time as a metastable
state. Such considerations have already been stated in connection with the existence of a
Bose-condensed gas in spite of a negative scattering length (Dodd 1996, Esry 1996).

Appendix. Bounds to the effects of localization of the wavefunctions and of
anharmonic terms

We use a continuous cut-off approximation to the ground state wavefunctionϕ(x) of a
harmonic oscillator (one-dimensional, centred atx = 0):

ψ(x) = γ
(
ω2

π

)1/4

[e−x
2ω2/2− e−`

2ω2/2]θ(`− |x|).
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The normalization factorγ is greater than 1. It can be bounded by

γ <

(
1− 2√

πω`
e−`

2ω2 − 4e−`
2ω2/2

)−1/2

.

(Derived by finding lower bounds to the integrals which determine‖ψ‖.)
The expectation value of any increasing positiveV (|x|) (the interaction with a partner

at the right distance) gets smaller by this cut-off. The line of reasoning is:γ > 1 ⇒
ψ ′(x) < ϕ′(x) for x ∈ (0, `)⇒ ψ − ϕ is decreasing on(0, `)⇒ ψ2− ϕ2 is decreasing⇒
(by Chebyshev’s inequality)∫ ∞

0
V (x)ψ2(x) dx =

∫ `

0
Vψ2 <

∫ `

0
V ϕ2 <

∫ ∞
0
V ϕ2.

The kinetic energy increases in the procedure of cutting-off. This increase is bounded:∫ +∞
−∞
|ψ ′(x)|2 dx = γ 2

∫ +`
−`
|ϕ′|2 < γ 2

∫ +∞
−∞
|ϕ′|2.

For the three-particle model,̀< c/2 will guarantee thatψ is in the Hilbert space. Also
` < d/2 is useful, in order not to involve theδ-barrier as contributing to the energy.
(Otherwise, the fall-off of the Gaussian would make good bounds to these contributions.)
Finally, `/c shall be small.

The trial functionψ1(u)ψ2(v)ψ3(w) (with the appropriateωi) is used to estimate the
ground-state energy of the Hamiltonian (16) and (15). For the harmonic-oscillator part we
get (18) plus the changes discussed above. In the anharmonic part,

f (r1, r2)
∂2

∂w2
+ g(r1, r2, ϑ)+ Vanh(u, v,w)

g is of no concern for bosons, since it is negative, see (16). For fermions it is positive
(the angular momentum barrier) of the order of 1/c2. The anharmonic part of the potential
can be studied by expanding the interactions as Taylor series inu, v,w, see (14). That the
corrections to the harmonic quadratic terms are of the order 1/c can be understood as a
geometric effect.

The operatorf ∂2

∂w2 contributes the kinetic energy ofψ3(w), multiplied by the expectation

of f = c2

4

(
1
r2

1
+ 1

r2
2

)
− 1. On the support ofψ1ψ2 this function is bounded by`

c
+ 2`2

(c−2`)2 .
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